💪
3 Week Bootcamp: Building Realtime LLM Application
  • Introduction
    • Timelines and Structure
    • Course Syllabus
    • Meet your Instructors
    • Action Items
  • Basics of LLM
    • What is Generative AI?
    • What is a Large Language Model?
    • Advantages and Applications of Large Language Models
    • Bonus Resource: Multimodal LLMs and Google Gemini
  • Word Vectors Simplified
    • What is a Word Vector
    • Word Vector Relationships
    • Role of Context in LLMs
    • Transforming Vectors into LLM Responses
      • Neural Networks and Transformers (Bonus Module)
      • Attention and Transformers (Bonus Module)
      • Multi-Head Attention, Transformers Architecture, and Further Reads (Bonus Module)
    • Graded Quiz 1
  • Prompt Engineering
    • What is Prompt Engineering
    • Prompt Engineering and In-context Learning
    • Best Practices to Follow in Prompt Engineering
    • Token Limits in Prompts
    • Ungraded Prompt Engineering Excercise
      • Story for the Excercise: The eSports Enigma
      • Your Task
  • Retrieval Augmented Generation and LLM Architecture
    • What is Retrieval Augmented Generation (RAG)?
    • Primer to RAG: Pre-Trained and Fine-Tuned LLMs
    • In-Context Learning
    • High-level LLM Architecture Components for In-context Learning
    • Diving Deeper: LLM Architecture Components
    • LLM Architecture Diagram and Various Steps
    • RAG versus Fine-Tuning and Prompt Engineering
    • Versatility and Efficiency in Retrieval-Augmented Generation (RAG)
    • Key Benefits of RAG for Enterprise-Grade LLM Applications
    • Similarity Search in Vectors (Bonus Module)
    • Using kNN and LSH to Enhance Similarity Search in Vector Embeddings (Bonus Module)
    • Graded Quiz 2
  • Hands-on Development
    • Prerequisites
    • Dropbox Retrieval App in 15 Minutes
      • Building the app without Dockerization
      • Understanding Docker
      • Building the Dockerized App
    • Amazon Discounts App
      • How the Project Works
      • Repository Walkthrough
    • How to Run 'Examples'
  • Bonus Resource: Recorded Interactions from the Archives
  • Bootcamp Keynote Session on Vision Transformers
  • Final Project + Giveaways
    • Prizes and Giveaways
    • Tracks for Submission
    • Final Submission
Powered by GitBook
On this page
  1. Word Vectors Simplified

What is a Word Vector

PreviousWord Vectors SimplifiedNextWord Vector Relationships

Last updated 1 year ago

Before delving into the complex details of Large Language Models, it's essential to grasp the basic elements: Word Vectors. Picture language as existing within a multi-dimensional expanse; every single word occupies a distinct position in that continuum. Word vectors essentially translate words into a numerical framework, thus rendering text understandable to LLMs.

In the linked video, Anup Surendran sets the stage for comprehending LLMs by addressing fundamental inquiries:

  • What is the meaning of LLMs?

  • Could you define Word Vectors?